他本是IBM全球银行数据挖掘咨询组组长,有丰富的数据挖掘项目经验,怀着创业的梦想,他从IBM出来,在中科院带研究生的同时,也办了一家提供数据挖掘解决方案和咨询业务的公司――吉贝克信息技术(北京)有限公司。数据挖掘本身并不产生价值,实施数据挖掘后产生的结果才有价
挖掘结果未必能改善现状
数据挖掘的结果是不确定的,要和专业知识相结合才能对其做出判断。说白了,数据挖掘只是一个工具,它可以发现一些潜在的用户,但不会告诉使用者为什么,也不能保证这些潜在的用户成为现实。
实际上,数据挖掘只能找出数据上的关联,还不能把这种数据关联关系当成因果关系。例如挖掘发现,“大多数车祸出现在中等行驶速度当中,极少的事故出在高于150公里/小时的速度上。”人们当然不能认为“高速行驶比较安全”,它的真实原因在于“多数人是以中速行驶,因此多数车祸出在中速行驶的车辆上”。
数据挖掘的成功要求CEO对期望解决问题的领域有深刻的理解,理解数据,理解其过程,才能对数据挖掘的结果找出合理的解释。拿啤酒和尿布这一经典例子来说,如何去解释这种现象,是应该将两者放在一起还是分开销售?需要摸透消费者的心理才能做出决定,而无法靠数据挖掘得出结论。
美国有家冰激凌生产商,总是听到顾客对产品的抱怨,而产品的质量又检查不出什么问题,企业CEO也一直不明就里。后来市场部用上数据挖掘软件,通过分析知道问题出在产品的外包装上,由于包装上冰激凌图片里的水果数量较多,而实际产品没有那么多,导致了顾客的不满。市场部随即换上新的包装,顾客的抱怨也就停止了,但销量并没有明显增加。数据挖掘的结果帮助企业解决了一个表面问题,但没有改善企业的经营状况。
数据挖掘提供的是一个辅助决策的系统,它不能代替CEO来进行决策。人在所有的信息系统包括数据挖掘平台中的作用始终是第一位的。不能快速、准确地制定决策方针等于将市场送给对手,不能及时发现业务的潜在信息等于浪费自己的资源。数据挖掘给出的结论仍然只是参考,而不是最终结论,事情的决断和执行仍然要靠CEO的智慧。
网友评论