台资餐饮企业"一茶一座"在内地发展迅猛,几年下来已经开了34家连锁店,历史数据累积到三千多万条;本土生产型企业"乐百氏"的门店几乎已铺遍全国,总部十分重视原始数据的采集,为加强对各区域门店和经销商的管理,需要上一套分销系统。
尴尬处境:大企业成功案例少 中小企业需求小
台资餐饮企业"一茶一座"在内地发展迅猛,几年下来已经开了34家连锁店,历史数据累积到三千多万条;本土生产型企业"乐百氏"的门店几乎已铺遍全国,总部十分重视原始数据的采集,为加强对各区域门店和经销商的管理,需要上一套分销系统。
两家企业都是中等规模,信息基础设施较为完备,信息化项目的负责人也既懂业务又懂技术;巧的是,他们今年都选择了部署商务智能系统。接受采访时两位CIO均表示,迄今为止企业的数据主要集中在销售方面,财务、库存数据还没有整合到系统中,以企业目前的运营规模和数据流量来看,没有实施数据挖掘的必要。
1998年,数据挖掘带着"啤酒加尿布"的光环来到中国,引起理论界一阵热炒;紧接着,一些大牌IT企业也加入炒作的行列,大有企业救世主的风范。然而经过几年的实践,数据挖掘的应用和实施仍处困境,即便在电信、税务、金融等领域,成功案例也屈指可数。数据挖掘何以炒着热吃着冷?数据挖掘是大忽悠还是懵懂少年?
"一茶一座"和乐百氏公司的看法,颇有代表性。至今,企业普遍使用的数据挖掘手段仍然只是报表分析或OLAP信息钻取,情况好点的也不过是一些第三方建立的在实际运用中效果相当有限的客户流失预测模型。
中科院研究生院软件学院潘辛平教授一直关注着数据挖掘技术的进展,他常问项目参与者:哪些信息是真正通过挖掘才展现出来的,而哪些信息是本来就已知的,往往得不到令人满意的答复。期间还有人告诉他,某证券公司数据挖掘项目的结论之一竟然是:凡在深交所开户的投资者必然也在上交所开户,消息传开,圈里的朋友都拿它当饭桌上的笑话讲。
笑话归笑话,对于企业客户而言,数据挖掘的应用存在大量天然障碍是不争的事实!日处理数据达到Tb(1024G)级才有意义;平台软件或解决方案动不动得花费上千万元,哪怕租用两年也得几百万;企业必须专门配备一支IT队伍,在项目建成后负责数据分析与挖掘工作。如果企业的经营规模不够大,年营业额不够高,没有一定的信息技术基础,是不敢染指数据挖掘的。
因此,更多的企业最终选择的是把数据仓库、在线分析处理(OLAP)、数据挖掘等技术打包在内的整套商务智能系统,而这种商务智能系统的数据挖掘能力偏弱。
数据是数据挖掘应用的依据,中科院金融科技研究中心首席科学家刘世平认为,即便在大型企业,由于数据搜集起步普遍比较晚,数据可得性和完备性都不高。很多行业的生产、财务、销售等敏感数据,由于用户的选择性输入或漏输、错输,难以为数据挖掘工具所用。
企业需要具备什么基础才能应用数据挖掘技术呢?SPSS数据挖掘项目经理戴庆祝表示,理想的起点是建立一个数据仓库,里面保存好所有客户的数据,以及市场竞争对手的相关数据。如果数据仓库还没有建起来就直接上数据挖掘应用,结果很可能中途夭折,因为数据挖掘前期几乎80%的工作都是在准备数据,把数据整合、抽取、清洗、转换、装载。如果给出的最初数据质量不高,模型再好,最后做出的预测也难如人意。
另一方面,开发商提供的软件自身也存在缺陷,例如模型与实际要求偏差大,缺乏主动预警机制等。数据挖掘工具引入国内时间不长,并没有分行业推出不同版本,很多系统实施顾问也只能够提供简单通用的算法,用起来似隔靴搔痒。在流行的数据挖掘解决方案中,多以"页面浏览"的方式将信息传达给用户,缺乏主动出击、危险预警的理念。
例如某企业财务指标超出正常范围时,系统页面会采用指示灯闪烁的形式提示危险信息,如果相关人员没有浏览该数据分析页面,就无法获取这一重要信息。
网友评论