第二页
在本次讲座中,Kaleen Man女士着重提到,英特尔将为北桥MCH提供全新的广发的热管理技术,在2007年将作为重点之一。同样的,MCH的温度也被划分为三个级别:TSFSC、Throttling limit以及Term Trip。这其中值得注意的是,如果北桥MCH超过热保护极限Throttling limit时,MCH将在0.5ms内将其与内存和I/O的传输切换到预设的安全值,即降低内存与I/O性能以保护系统不会因过热而出现物理损害。
当然,散热系统的实施是内存和传感器的整合,每一个风扇和传感器都可以相互连接,在2007年,将会有处理器、内存、北桥互连的负责整体散热的传感器,同时,因为温度读取会有一定延时,可能会造成读取温度不是实时温度的准确值。因此新的北桥MCH的温度控制,将会是整合的规模可扩展的温度控制。
对于处理器和MCH来说,灾难性的热保护是最为重要的,如果出现灾难性的过热,硬件设备往往会因为电子迁移现象、过热现象而出现物理损害。同时,由于可能出现的异常的散热失效,如散热系统故障,风扇停转,处理器、北桥和内存的Term Trip信号――即考虑误差修正的过热区间,将会精确的降低系统功耗,从而避免永久的物理损害,当然,Term Trip信号也会触发系统日志,从而为系统工程师的事件诊断提供帮助。
当然,英特尔提供了一整套完备的验证程序,以验证散热系统是否可以保证所有元件的热保护,系统工程师将就FSC进行数学建模工作,最终FSC在模型中达到一定值之后即可满足所有元器件的散热要求。同时,数值读取会有一定的传感器误差,因此过热保护临界需要防护带,因此内存的CLTT设定会有一定的范围界定。
网友评论