第三页
7、4G手机网络
第一代手机仅仅凭借自身简单便捷的无线通话功能就虏获了用户的心,第二代(即2G)手机引入SMS短信以及WAP无线网络浏览功能,2.5G增 加图片及视频能力,但与宽带的数据传输速度相比,手机网络的数据传输速度还有些偏慢,即便是当今大红大紫的iPhone手机也难以摆脱这样的尴尬,随着 3G技术的起步并普及,更高速的连接终于让2.5G时代诞生的多媒体应用变得平易近人,不过即将到来的4G世界显然更值得。
4G与3G间的根本区别是网络的交换方式,到现在为止,在绝大多数手机网络(除VoIP即网络电话以外)中,所谓的线路交换就是指在通话者之间 激活一条专属通道,这种陈旧模式将语音通话区别于数据连接,由此一来,要让手机同时传输语音与数据也变得不可能。而4G网络采用的是纯IP方式进行交换, 这与互联网上所进行的数据传输活动类似,意味着用户将不仅能同时运用手机进行通话与短信操作,还能做更多目前可能还无法实现的事情。从手机到笔记本电脑, 甚至连饮料自动售卖机,几乎所有设备都能与该网络连接,享受无线宽带服务。此外,4G的灵活性可能会带来另一个结果:无线运营商们将很可能被迫放松长期以 来对用户使用网络的“铁腕管制”,从而让所有人能在上面进行更为自由的沟通。
时间表:
现在,美国四大无线运营商在3G网络的应用依然浮于水面,绝大多数使用者对这种先进的数据流传输方式并不感冒,但作为4G网络的先头技术—— WiMax目前已经初见端倪,其在大企业网络及电信公司领域的应用正处于缓慢上升态势中,虽然WiMax自身角度并非一种蜂窝移动技术,但在4G网络全面 铺开前,还需要寻找一个建立在Wimax基础之上的新通信协议。由于商业用户提升了对高端无线数据服务的需求,手机网络服务商将开始配置可提供4G服务的 网络与设备,我们预期首部真正意义上的4G手机及相应的数据卡将会于2011年入市。
8、WHDI无线高清接口
尽管这场来势汹汹的无线革命已经触及数字家庭,但使用高清电视依旧免不了要选择合适的位置并考虑布线问题,不仅要打破室内装修的整体效果,也不 利于无线时代的人机互动的自由发挥。所以就有人很自然地发问,电视是否也应该不用考虑视频源的位置而任意摆放,还能继续保证原有的视频质量不受影响?
无线高清接口(WHDI)是高清多媒体接口(HDMI)的无线替代版本,它使用一个5GHz频率的无线传送装置传输未经压缩的1080p, 30fps的高清视频信号,而这些信号将会来自一台预装有WHDI模块的DVD播放机、游戏机或是机顶盒,对于一台同样预装WHDI模块的电视来说,传输 距离甚至可以达到30.48m。因为WHDI信号与HDMI兼容,用户也可以为现有的娱乐设备购买HDMI无线适配器,这样就可以完全按自己的喜好摆放电 视的位置,而无需在墙边摆放各式各样的线缆了。
这台由Amimon公司开发的WHDI适配器可以将来自分线盒中的高清视频信号传送至接收电视中。
时间表:
WHDI芯片组的制造商Amimon公司在2007年8月底时就面向各电子产品厂商发布了该项技术,现在,他们之间的产品竞赛正不断地把 WHDI技术推向市场。电视机制造商们也已经开始在演示一些预装无线功能模块的高清电视。由于增加了WHDI,预计会让每台新电视机增加200美元的成 本。对于用户目前现有的硬件设备,使用WHDI无线适配器比较划算,一对适配器价格大概在300~400美元之间。Amimon的营销副总裁Noam Geri认为,今后几年中,集成入电视内部的这类产品的成本会下降至10美元左右,而应用在适配器上的则会降到60美元。
9、5TB的海量硬盘
随着信息技术和数字技术的深入,我们身边的信息和数字媒体内容呈爆炸式增长,当然对于存储空间的要求越似乎永无止境,超大容量的硬盘的出
现就是为了满足这样的需求。
热辅助磁记录技术,也可称之为HAMR(另一种与其几乎完全相同的技术是由富士通公司开发的TAMR)利用激光对磁盘盘片表面的待写入区域进行 加热,等温度升高后,再以传统方式改变磁性写入数据,如此一来便可能将1TB量的数据塞进盘片表面1平方英寸的空间内,而这已经是当前极限存储密度的2 倍。当硬盘的读/写磁头工作时,它会在瞬间将激光传递至盘片表面,改变当中的铁铂合金粒子的稳定状态,使之符合执行读写操作的要求,当盘片被加热后,读/ 写磁头便可非常精确(被控制在几十纳米的范围内)地在一个极小空间内塞入大量数据。在这个过程结束后的几纳秒时间内,盘片表面就会冷却从而实现长久稳定保 存数据的目的。
另外,由于该技术的出现,使得磁盘上数据的组织方式也将发生改变,与之前磁盘扇区被任意安排的状况不同,HAMR存储设备会借助磁盘表面的铁铂磁颗粒将数据组织成自排列磁性阵列,这样的组织方式会允许在盘片表面的每个磁颗粒上创建单一数据。
时间表:
HAMR技术目前依然是一个很值得深入研究的项目,但相信不久后便能投放市场,希捷希望能在2011年时发布自己的5TB容量HAMR硬盘,继而在接下去的几年后发布最高可至37.5TB容量的硬盘。
10、下一代互联网基石——IPv6
作为目前整个互联网的“基石”,IPv4协议问世也达25年之久,日暮垂年之时,其所遭遇的问题也愈见明显,尤其是加入网络的设备越来越多,从而造成的IP地址资源短缺的紧迫问题,而IPv6的到来相信会扭转这个尴尬局面。
与使用32位地址(例如155.54.210.63)的IPv4不同,IPv6使用的是128位地址(例如2001:0ba0:01e0: d001:0000:0000:d0f0:0010),这一看似小且简单的变动最终能让地球上的每一个人,也可以是地球上每一台电脑和接入设备都可获得一 个独立IP地址,另外,IPv6协议可在网络层上进行加密与认证,这也让网络上各方之间的通信都能获得极佳的私密性。
时间表:
尽管IPv6早已问世多年,但几乎没什么人使用过它,原因很简单,与IPv4相比,其硬件支持所需费用更为高昂,也很少有网络管理员会接受到相 关管理经验的培训,但是在美国,政府已经宣布将会从2008年夏天起将整个网络迁移至IPv6 标准上,虽然IP地址资源的枯竭期预计会在2011年4月左右到来,但从美国政府制定的那个时间表来看,IPv6技术依旧有望在此之前就逐渐得到应用,而 目前越来越稀缺的地址资源也会迫使ISP服务商升级自己的网络。
11、Surface Computing(桌面计算)
自从Douglas Engelbart在1964年面向桌面市场引入鼠标这一革命性的理念后,几十年来,移动鼠标来操纵屏幕上图形的做法已经深入人心。但就在这个过程中,鼠 标实际上是更为自然的人机界面——人的手指尖的替代品,而在未来的几年中,新一代PC就可以直接利用人的指尖进行操控。
Tabletop computing(桌面计算)也被称为Surface computing,它在不少人眼中无疑是一种返朴归真的努力,几个好朋友又可以重聚在一张“桌子”周围,以传统友好的方式参与到电脑互动中。由于这种桌 面电脑可以同时接纳多种类型的输入,所以自然允许多个用户一起用指尖点触屏幕上显示的图像,从而实现同一平台上的分工协作。桌面计算代表的是多重触控这一 重要技术方向,不仅在PC领域,在iPhone等移动设备或者大屏幕显示领域,同样将成为重要方向之一。
现在,已经有不少公司正在致力于研究桌面计算技术,实现方式也有一定的差别。目前其中2个颇具意义的成果分别是来自微软的摄像头驱动桌面PC (camera-driven Surface PC)以及三菱电子研究实验室研发的射频驱动DiamondTouch人机交互系统,前者利用5个红外摄像头来跟踪指尖在屏幕上的动作轨迹,同时又以投影 方式将内部的图像呈现在桌面表面上;后者则会自桌面上方投射图像,使用电容耦合(类似于笔记本电脑中的触摸板)方式来跟踪指尖位移,不过这种设计会在用户 触摸屏幕时不可避免地产生阴影。
时间表:
相信当三菱电子研究实验室的DiamondTouch技术依旧还处在研发项目阶段时,微软的Surface PC就将直接进驻酒店、赌场中,虽然第一代Surface PC出现的地方都属于公共场所,但微软还是希望能在2010年针对商业用户推出其会议室版本,对家庭用户来说,从现在算起的3~5年后也能得到它,而最终 正如微软所言,Surface PC将会被做成工作台、镜子或是家中其它任何的平面设备。
网友评论