下面就该结构中的主要域进行说明:
域 | 说明 |
Lock | 旋转锁,用于保护该zone |
free_pages | 该zone空闲页总数 |
pages_min,
pages_low, pages_high |
Zone的阈值 |
need_balance | 该标志告诉kswapd需要对该zone的页进行交换 |
Free_area | 空闲区域的位图,用于buddy分配器 |
wait_table | 等待释放该页进程的队列散列表,这对wait_on_page()和unlock_page()是非常重要的。当进程都在一条队列上等待时,将引起进程的抖动 |
zone_mem_map | 全局mem_map中该zone所引用的第一页 |
zone_start_paddr | 含义与node_start_paddr类似 |
zone_start_mapnr | 含义与node_start_mapnr类似 |
Name | 该zone的名字。如,“DMA”,“Normal”或“HighMem” |
Size | Zone的大小,以页为单位 |
当系统中可用的内存比较少时,kswapd将被唤醒,并进行页交换。如果需要内存的压力非常大,进程将同步释放内存。如前面所述,每个zone有三个阈值,称为pages_low,pages_min和pages_high,用于跟踪该zone的内存压力。pages_min的页框数是由内存初始化free_area_init_core函数,根据该zone内页框的比例计算的,最小值为20页,最大值一般为255页。当到达pages_min时,分配器将采用同步方式进行kswapd的工作;当空闲页的数目达到pages_low时,kswapd被buddy分配器唤醒,开始释放页;当达到pages_high时,kswapd将被唤醒,此时kswapd不会考虑如何平衡该zone,直到有pages_high空闲页为止。一般情况下,pages_high缺省值是pages_min的3倍。
Linux存储管理的这种层次式结构可以将ACPI的SRAT和SLIT信息与Node、Zone实现有效的映射,从而克服了传统Linux中平坦式结构无法反映NUMA架构的缺点。当一个任务请求分配内存时,Linux采用局部结点分配策略,首先在自己的结点内寻找空闲页;如果没有,则到相邻的结点中寻找空闲页;如果还没有,则到远程结点中寻找空闲页,从而在操作系统级优化了访存性能。
网友评论